Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cureus ; 15(2): e34827, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2285293

ABSTRACT

Background The nucleocapsid protein (N protein) of SARS-CoV-2 is undeniably a potent target for the development of diagnostic tools due to its abundant expression and lower immune evasion pressure compared to spike (S) protein. Methods Blood samples of active COVID-19 infections (n=71) and post-COVID-19 (n=11) were collected from a tertiary care hospital in India; pre-COVID-19 (n=12) sera samples served as controls. Real-time reverse transcriptase-PCR (rRT-PCR) confirmed pooled sera samples (n=5) were used with PEPperCHIP® SARS-CoV-2 Proteome Microarray (PEPperPRINT GmbH, Germany) to screen immunodominant epitopes of SARS-CoV-2. Highly immunodominant epitopes were then commercially synthesized and further validated for their immunoreactivity by dot-blot and ELISA. Results The lowest detectable concentration (LDC) of the N1 peptide in the dot-blot assay was 12.5 µg demonstrating it to be fairly immunoreactive compared to control sera. IgG titers against the contiguous peptide (N2: 156AIVLQLPQGTTLPKGFYAEGS176) was found to be significantly higher (p=0.018) in post-COVID-19 compared to pre-COVID-19 control sera. These results suggested that N2-specific IgG titers buildup over time as expected in post-COVID-19 sera samples, while a non-significant immunoreactivity of the N2 peptide was also observed in active-COVID-19 sera samples. However, there were no significant differences in the total IgG titers between active COVID-19 infections, post-COVID-19 and pre-COVID-19 controls. Conclusion The N2-specific IgG titers in post-COVID-19 samples demonstrated the potential of N protein as an exposure biomarker, particularly in sero-surveillance studies.

2.
Viruses ; 15(2)2023 02 20.
Article in English | MEDLINE | ID: covidwho-2243556

ABSTRACT

The COVID-19 pandemic continues to affect individuals across the globe, with some individuals experiencing more severe disease than others. The relatively high frequency of re-infections and breakthrough infections observed with SARS-CoV-2 highlights the importance of extending our understanding of immunity to COVID-19. Here, we aim to shed light on the importance of antibody titres and epitope utilization in protection from re-infection. Health care workers are highly exposed to SARS-CoV-2 and are therefore also more likely to become re-infected. We utilized quantitative, multi-antigen, multi-epitope SARS-CoV-2 protein microarrays to measure IgG and IgA titres against various domains of the nucleocapsid and spike proteins. Potential re-infections in a large, diverse health care worker cohort (N = 300) during the second wave of the pandemic were identified by assessing the IgG anti-N titres before and after the second wave. We assessed epitope coverage and antibody titres between the 'single infection' and 're-infection' groups. Clear differences were observed in the breadth of the anti-N response before the second wave, with the epitope coverage for both IgG (p = 0.019) and IgA (p = 0.015) being significantly increased in those who did not become re-infected compared to those who did. Additionally, the IgG anti-N (p = 0.004) and anti-S titres (p = 0.018) were significantly higher in those not re-infected. These results highlight the importance of the breadth of elicited antibody epitope coverage following natural infection in protection from re-infection and disease in the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Epitopes , Immunoglobulin G , Pandemics , Nucleocapsid , Reinfection , Immunoglobulin A
3.
Cells ; 12(1)2022 12 25.
Article in English | MEDLINE | ID: covidwho-2241776

ABSTRACT

Protein microarray screenings identified fungal natural products from the azaphilone family as potent inhibitors of SARS-CoV-2 spike protein binding to host ACE2 receptors. Cohaerin F, as the most potent substance from the cohaerin group, led to more than 50% less binding of ACE2 and SARS-CoV-2 spike protein. A survey for structurally related azaphilones yielded the structure elucidation of six new multiformins E-J (10-15) and the revision of the stereochemistry of the multiformins. Cohaerin and multiformin azaphilones (1-5, 8, 12) were assessed for their activity in a cell-based infection assay. Calu-3 cells expressing human ACE2 receptor showed more than 75% and 50% less infection by SARS-CoV-2 pseudotyped lentivirus particles after treatment with cohaerin C (1) and cohaerin F (4), respectively. Multiformin C (8) and G (12) that nearly abolished the infection of cells. Our data show that multiformin-type azaphilones prevent the binding of SARS-CoV-2 to the cell entry receptor ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding
4.
Mol Cell Proteomics ; 22(4): 100507, 2023 04.
Article in English | MEDLINE | ID: covidwho-2232174

ABSTRACT

In November 2022, 68% of the population received at least one dose of COVID-19 vaccines. Owing to the ongoing mutations, especially for the variants of concern (VOCs), it is important to monitor the humoral immune responses after different vaccination strategies. In this study, we developed a SARS-CoV-2 variant protein microarray that contained the spike proteins from the VOCs, e.g., alpha, beta, gamma, delta, and omicron, to quantify the binding antibody and surrogate neutralizing antibody. Plasmas were collected after two doses of matching AZD1222 (AZx2), two doses of matching mRNA-1273 (Mx2), or mixing AZD1222 and mRNA-1273 (AZ+M). The results showed a significant decrease of surrogate neutralizing antibodies against the receptor-binding domain in all VOCs in AZx2 and Mx2 but not AZ+M. A similar but minor reduction pattern of surrogate neutralizing antibodies against the extracellular domain was observed. While Mx2 exhibited a higher surrogate neutralizing level against all VOCs compared with AZx2, AZ+M showed an even higher surrogate neutralizing level in gamma and omicron compared with Mx2. It is worth noting that the binding antibody displayed a low correlation to the surrogate neutralizing antibody (R-square 0.130-0.382). This study delivers insights into humoral immunities, SARS-CoV-2 mutations, and mixing and matching vaccine strategies, which may provide a more effective vaccine strategy especially in preventing omicron.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , ChAdOx1 nCoV-19 , Immunity, Humoral , 2019-nCoV Vaccine mRNA-1273 , Protein Array Analysis , COVID-19/prevention & control , Antibodies, Neutralizing
5.
J Clin Med ; 11(19)2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2066211

ABSTRACT

Age has been found to be the single most significant factor in COVID-19 severity and outcome. However, the age-related severity factors of COVID-19 have not been definitively established. In this study, we detected SARS-CoV-2-specific antibody responses and infectious disease-related blood indicators in 2360 sera from 783 COVID-19 patients, with an age range of 1-92 years. In addition, we recorded the individual information and clinical symptoms of the patients. We found that the IgG responses for S1, N, and ORF3a and the IgM for NSP7 were associated with severe COVID-19 at different ages. The IgM responses for the S-protein peptides S1-113 (aa 673-684) and S2-97 (aa 1262-1273) were associated with severe COVID-19 in patients aged <60. Furthermore, we found that the IgM for S1-113 and NSP7 may play a protective role in patients aged <60 and >80, respectively. Regarding clinical parameters, we analyzed the diagnostic ability of five clinical parameters for severe COVID-19 in six age groups and identified three-target panel, glucose, IL-6, myoglobin, IL-6, and NT proBNP as the appropriate diagnostic markers for severe COVID-19 in patients aged <41, 41-50, 51-60, 61-70, 71-80, and >80, respectively. The age-associated severity factors revealed here will facilitate our understanding of COVID-19 immunity and diagnosis, and eventually provide meaningful information for combating the pandemic.

6.
Acta Biochim Biophys Sin (Shanghai) ; 54(4): 556-564, 2022 Apr 25.
Article in English | MEDLINE | ID: covidwho-1862958

ABSTRACT

Age has been found to be one of the main risk factors for the severity and outcome of COVID-19. However, differences in SARS-CoV-2 specific antibody responses among COVID-19 patients of different age groups remain largely unknown. In this study, we analyzed the IgG/IgM responses to 21 SARS-CoV-2 proteins and 197 peptides that fully cover the spike protein against 731 sera collected from 731 COVID-19 patients aged from 1 to We show that there is no overall difference in SARS-CoV-2 antibody responses in COVID-19 patients in the 4 age groups. By antibody response landscape maps, we find that the IgG response profiles of SARS-CoV-2 proteins are positively correlated with age. The S protein linear epitope map shows that the immunogenicity of the S-protein peptides is related to peptide sequence, disease severity and age of the COVID-19 patients. Furthermore, the enrichment analysis indicates that low S1 IgG responses are enriched in patients aged <50 and high S1 IgG responses are enriched in mild COVID-19 patients aged >60. In addition, high responses of non-structural/accessory proteins are enriched in severe COVID-19 patients aged >70. These results suggest the distinct immune response of IgG/IgM to each SARS-CoV-2 protein in patients of different age, which may facilitate a deeper understanding of the immune responses in COVID-19 patients.


Subject(s)
Age Factors , Antibody Formation , COVID-19 , Aged , Antibodies, Viral/blood , COVID-19/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Middle Aged , Peptides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
Biosens Bioelectron ; 204: 114067, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1670217

ABSTRACT

SARS-CoV-2 is quickly evolving from wild-type to many variants and spreading around the globe. Since many people have been vaccinated with various types of vaccines, it is crucial to develop a high throughput platform for measuring the antibody responses and surrogate neutralizing activities against multiple SARS-CoV-2 variants. To meet this need, the present study developed a SARS-CoV-2 variant (CoVariant) array which consists of the extracellular domain of spike variants, e.g., wild-type, D614G, B.1.1.7, B.1.351, P.1, B.1.617, B.1.617.1, B.1.617.2, and B.1.617.3. A surrogate virus neutralization on the CoVariant array was established to quantify the bindings of antibody and host receptor ACE2 simultaneously to spike variants. By using a chimeric anti-spike antibody, we demonstrated a broad binding spectrum of antibodies while inhibiting the bindings of ACE2 to spike variants. To monitor the humoral immunities after vaccination, we collected serums from unvaccinated, partial, or fully vaccinated individuals with either mRNA-1273 or AZD1222 (ChAdOx1). The results showed partial vaccination increased the surrogate neutralization against all the mutants while full vaccination boosted the most. Although IgG, IgA, and IgM isotypes correlated with surrogate neutralizing activities, they behave differently throughout the vaccination processes. Overall, this study developed CoVariant arrays and assays for profiling the humoral responses which are useful for immune assessment, vaccine research, and drug development.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , ChAdOx1 nCoV-19 , Humans , Immunity, Humoral , Protein Array Analysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
Journal of Biosciences ; 46(4), 2021.
Article in English | EMBASE | ID: covidwho-1664506

ABSTRACT

Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.

9.
Viruses ; 13(12)2021 12 20.
Article in English | MEDLINE | ID: covidwho-1580419

ABSTRACT

A microarray-based assay to detect IgG and IgM antibodies against betacoronaviruses (SARS-CoV-2, SARS, MERS, OC43, and HKU1), other respiratory viruses and type I interferons (IFN-Is) was developed. This multiplex assay was applied to track antibody cross-reactivity due to previous contact with similar viruses and to identify antibodies against IFN-Is as the markers for severe COVID-19. In total, 278 serum samples from convalescent plasma donors, COVID-19 patients in the intensive care unit (ICU) and patients who recovered from mild/moderate COVID-19, vaccine recipients, prepandemic and pandemic patients with autoimmune endocrine disorders, and a heterogeneous prepandemic cohort including healthy individuals and chronically ill patients were analyzed. The anti-SARS-CoV-2 microarray results agreed well with the ELISA results. Regarding ICU patients, autoantibodies against IFN-Is were detected in 10.5% of samples, and 10.5% of samples were found to simultaneously contain IgM antibodies against more than two different viruses. Cross-reactivity between IgG against the SARS-CoV-2 nucleocapsid and IgG against the OC43 and HKU1 spike proteins was observed, resulting in positive signals for the SARS-CoV-2 nucleocapsid in prepandemic samples from patients with autoimmune endocrine disorders. The presence of IgG against the SARS-CoV-2 nucleocapsid in the absence of IgG against the SARS-CoV-2 spike RBD should be interpreted with caution.


Subject(s)
Antibodies, Viral/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Viruses/immunology , Antibodies, Viral/blood , Antigens, Viral/immunology , Autoantibodies/blood , Autoantibodies/immunology , COVID-19/immunology , COVID-19 Serological Testing , Cross Reactions , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Protein Array Analysis , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/virology , Viruses/classification
10.
J Vet Diagn Invest ; 34(2): 190-198, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1546715

ABSTRACT

During the COVID-19 pandemic, infection of farmed mink has become not only an economic issue but also a widespread public health concern. International agencies have advised the use of strict molecular and serosurveillance methods for monitoring the SARS-CoV2 status on mink farms. We developed 2 ELISAs and a duplex protein microarray immunoassay (MI), all in a double-recognition format (DR), to detect SARS-CoV2 antibodies specific to the receptor-binding domain (RBD) of the spike protein and to the full-length nucleoprotein (N) in mink sera. We collected 264 mink serum samples and 126 oropharyngeal samples from 5 Spanish mink farms. In both of the ELISAs and the MI, RBD performed better than N protein for serologic differentiation of mink from SARS-CoV2-positive and -negative farms. Therefore, RBD was the optimal antigenic target for serosurveillance of mink farms.


Subject(s)
COVID-19 , Mink , Animals , Antibodies, Viral , COVID-19/veterinary , Farms , Immunoassay/veterinary , Pandemics , RNA, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
Genomics Proteomics Bioinformatics ; 19(5): 669-678, 2021 10.
Article in English | MEDLINE | ID: covidwho-1499887

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2, varies with regard to symptoms and mortality rates among populations. Humoral immunity plays critical roles in SARS-CoV-2 infection and recovery from COVID-19. However, differences in immune responses and clinical features among COVID-19 patients remain largely unknown. Here, we report a database for COVID-19-specific IgG/IgM immune responses and clinical parameters (named COVID-ONE-hi). COVID-ONE-hi is based on the data that contain the IgG/IgM responses to 24 full-length/truncated proteins corresponding to 20 of 28 known SARS-CoV-2 proteins and 199 spike protein peptides against 2360 serum samples collected from 783 COVID-19 patients. In addition, 96 clinical parameters for the 2360 serum samples and basic information for the 783 patients are integrated into the database. Furthermore, COVID-ONE-hi provides a dashboard for defining samples and a one-click analysis pipeline for a single group or paired groups. A set of samples of interest is easily defined by adjusting the scale bars of a variety of parameters. After the "START" button is clicked, one can readily obtain a comprehensive analysis report for further interpretation. COVID-ONE-hi is freely available at www.COVID-ONE.cn.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity, Humoral , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2
12.
Mol Cell ; 81(17): 3650-3658.e5, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1356368

ABSTRACT

CRISPR-inspired systems have been extensively developed for applications in genome editing and nucleic acid detection. Here, we introduce a CRISPR-based peptide display technology to facilitate customized, high-throughput in vitro protein interaction studies. We show that bespoke peptide libraries fused to catalytically inactive Cas9 (dCas9) and barcoded with unique single guide RNA (sgRNA) molecules self-assemble from a single mixed pool to programmable positions on a DNA microarray surface for rapid, multiplexed binding assays. We develop dCas9-displayed saturation mutagenesis libraries to characterize antibody-epitope binding for a commercial anti-FLAG monoclonal antibody and human serum antibodies. We also show that our platform can be used for viral epitope mapping and exhibits promise as a multiplexed diagnostics tool. Our CRISPR-based peptide display platform and the principles of complex library self-assembly using dCas9 could be adapted for rapid interrogation of varied customized protein libraries or biological materials assembly using DNA scaffolding.


Subject(s)
Epitopes/genetics , Gene Editing/methods , Peptide Library , RNA, Guide, Kinetoplastida/genetics , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , Epitopes/immunology , Humans , Mutagenesis/genetics , Protein Binding/genetics , Protein Binding/immunology , RNA, Guide, Kinetoplastida/immunology
SELECTION OF CITATIONS
SEARCH DETAIL